Skip to content
- Liu, C.-L., Tseng, C.-J., Huang, T.-H., & Wang, J.-W. (2023). Dynamic Parallel Machine Scheduling With Deep Q-Network. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
- Liu, C.-L., Tseng, C.-J., Huang, T.-H., Yang, J.-S., & Huang, K.-B. (2023). A multi-task learning model for building electrical load prediction. Energy and Buildings, 278, 112601.
- Liu, C.-L., & Huang, T.-H. (2023). Dynamic job-shop scheduling problems using graph neural network and deep reinforcement learning. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
- Chen, Y.-C., Lee, M.-H., Hsueh, S.-N., Liu, C.-L., Hui, C.-K., & Soong, R.-S. (2023). The influence of the Pringle maneuver in laparoscopic hepatectomy: continuous monitor of hemodynamic change can predict the perioperatively physiological reservation. Frontiers in Big Data, 6, 1042516.
- Liu, C.-L., Chang, T.-Y., Yang, J.-S., & Huang, K.-B. (2023). A deep learning sequence model based on self-attention and convolution for wind power prediction. Renewable Energy, 219, 119399.
- Lin, C.-h., & Liu, C.-L. (2023). Prediction of Blood Glucose Concentration Based on OptiScanner and XGBoost in ICU. IEEE Access.
- Lee, C. H., Trappey, A. J., Liu, C. L., Mo, J., & Desouza, K. C. (2022). Design and management of digital transformations for value creation. Advanced Engineering Informatics, 52, Article number: 101547.
- Liu, C.-L., Tseng, C.-J., Hsaio, W.-H., Wu, S.-H., & Lu, S.-R. (2022). Predicting the Wafer Material Removal Rate for Semiconductor Chemical Mechanical Polishing Using a Fusion Network. Applied Sciences, 12(22), 11478.
- Liu, C.-L., & Chang, Y.-H. (2022). Learning from imbalanced data with deep density hybrid sampling. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 52(11), 7065-7077.
- Liu, C.-L., Tain, Y.-L., Lin, Y.-C., & Hsu, C.-N. (2022). Prediction and Clinically Important Factors of Acute Kidney Injury Non-recovery. Frontiers in Medicine, 8, 789874.
- Xiao, B., Liu, C.-L., & Hsaio, W.-H. (2022). Semantic Cross Attention for Few-shot Learning. arXiv preprint arXiv:2210.06311.
- Liu, C.-M., Liu, C.-L., Hu, K.-W., Tseng, V. S., Chang, S.-L., Lin, Y.-J., Lo, L.-W., Chung, F.-P., Chao, T.-F., & Tuan, T.-C. (2022). A deep learning–enabled electrocardiogram model for the identification of a rare inherited arrhythmia: Brugada syndrome. Canadian Journal of Cardiology, 38(2), 152-159.
- Lee, C.-H., Liu, C.-L., Trappey, A. J., Mo, J. P., & Desouza, K. C. (2021). Understanding digital transformation in advanced manufacturing and engineering: A bibliometric analysis, topic modeling and research trend discovery. Advanced Engineering Informatics, 50, 101428.
- Tain, Y.-L., Liu, C.-L., Kuo, H.-C., & Hsu, C.-N. (2022). Kidney Function Trajectory within Six Months after Acute Kidney Injury Inpatient Care and Subsequent Adverse Kidney Outcomes: A Retrospective Cohort Study. Journal of Personalized Medicine, 12(10), 1606.
- Wei, C. T., Hsieh, M.-E., Liu, C.-L., & Tseng, V. S. (2022). Contrastive heartbeats: Contrastive learning for self-supervised ECG representation and phenotyping. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
- Liu, C.-M., Liu, C.-L., Hu, K.-W., Tseng, V. S., Chang, S.-L., Lin, Y.-J., Lo, L.-W., Chung, F.-P., Chao, T.-F., & Liao, T.-C. T. J.-N. (2021). B-PO02-181 THE COMPARISONS OF ARTIFICIAL INTELLIGENCE AND CARDIOLOGISTS FOR THE DIAGNOSIS OF TYPE 1 BRUGADA ELECTROCARDIOGRAM PATTERN. Heart Rhythm, 18(8), S172.
- Xiao, B., Liu, C.-L., & Hsaio, W.-H. (2020). Proxy network for few shot learning. Asian Conference on Machine Learning,
- Hsu, C.-N., Liu, C.-L., Tain, Y.-L., Kuo, C.-Y., & Lin, Y.-C. (2020). Machine learning model for risk prediction of community-acquired acute kidney injury hospitalization from electronic health records: development and validation study. Journal of Medical Internet Research, 22(8), e16903.
- Liu, C.-L., Chang, C.-C., & Tseng, C.-J. (2020). Actor-critic deep reinforcement learning for solving job shop scheduling problems. IEEE Access, 8, 71752-71762.
- Liu, C.-L., & Chen, Q.-H. (2020). Metric-based semi-supervised regression. IEEE Access, 8, 30001-30011.
- Liu, C.-L., Soong, R.-S., Lee, W.-C., Jiang, G.-W., & Lin, Y.-C. (2020). Predicting short-term survival after liver transplantation using machine learning. Scientific reports, 10(1), 5654.
- Chen, Y.-J., Liu, C.-L., Tseng, V. S., Hu, Y.-F., & Chen, S.-A. (2019). Large-scale classification of 12-lead ECG with deep learning. 2019 IEEE EMBS international conference on biomedical & health informatics (BHI),
- Lai, K. Y., Wang, J. W., & Liu, C.-L. (2019). Hypothesis combination using genetic algorithm. Proceedings of the International Conference on Industrial Engineering and Operations Management,
- Hsu, E.-Y., Liu, C.-L., & Tseng, V. S. (2019). Multivariate time series early classification with interpretability using deep learning and attention mechanism. Pacific-Asia Conference on Knowledge Discovery and Data Mining,
- Liu, C.-L., Hsaio, W.-H., Chang, T.-H., & Li, H.-H. (2019). Clustering data with partial background information. International Journal of Machine Learning and Cybernetics, 10, 1123-1138.
- Liu, C.-L., & Hsieh, P.-Y. (2019). Model-based synthetic sampling for imbalanced data. IEEE Transactions on Knowledge and Data Engineering, 32(8), 1543-1556.