• Huang, H.-S., Liu, C.-L., & Tseng, V. S. (2018). Multivariate time series early classification using multi-domain deep neural network. 2018 IEEE 5th International Conference on Data Science and Advanced Analytics (DSAA),
  • Karasawa, H., Liu, C.-L., & Ohwada, H. (2018). Deep 3d convolutional neural network architectures for alzheimer’s disease diagnosis. Intelligent Information and Database Systems: 10th Asian Conference, ACIIDS 2018, Dong Hoi City, Vietnam, March 19-21, 2018, Proceedings, Part I 10,
  • Liu, Y.-H., Liu, C.-L., & Tseng, S.-M. (2018). Deep discriminative features learning and sampling for imbalanced data problem. 2018 IEEE International Conference on Data Mining (ICDM),
  • Liu, C.-L., & Chen, Y.-C. (2018). Background music recommendation based on latent factors and moods. Knowledge-Based Systems, 159, 158-170.
  • Liu, C.-L., Hsaio, W.-H., & Chang, T.-H. (2018). Locality Sensitive K-means Clustering. Journal of Information Science & Engineering, 34(1).
  • Liu, C.-L., Hsaio, W.-H., & Lin, C.-Y. (2018). Bayesian exploratory clustering with entropy Chinese restaurant process. Intelligent Data Analysis, 22(3), 551-568.
  • Liu, C.-L., Hsaio, W.-H., & Tu, Y.-C. (2018). Time series classification with multivariate convolutional neural network. IEEE Transactions on industrial electronics, 66(6), 4788-4797.
  • Liu, C.-L., Soong, R.-S., Lee, W.-C., Chen, D.-H., & Hsu, S.-H. (2018). A predictive model for acute allograft rejection of liver transplantation. Expert Systems with Applications, 94, 228-236.
  • Liu, C.-L., Hsaio, W.-H., Xiao, B., Chen, C.-Y., & Wu, W.-L. (2017). Maximum-margin sparse coding. Neurocomputing, 238, 340-350.
  • Hsaio, W.-H., Liu, C.-L., & Wu, W.-L. (2017). Locality-constrained max-margin sparse coding. Pattern Recognition, 65, 285-295.
  • Liu, C.-L., Hsaio, W.-H., Chang, T.-H., & Jou, T.-M. (2017). Nonparametric multi-assignment clustering. Intelligent Data Analysis, 21(4), 893-911.
  • Yu, C.-E., Liu, C.-L., & Hsieh, H.-L. (2017). Hierarchical hypothesis structure for ensemble learning. 2017 13th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD),
  • Liu, C.-L., & Lee, C.-H. (2016). Enhancing text classification with the universum. 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD),
  • Liu, C.-L., & Wu, X.-W. (2016a). Fast recommendation on latent collaborative relations. Knowledge-Based Systems, 109, 25-34.
  • Liu, C.-L., & Wu, X.-W. (2016b). Large-scale recommender system with compact latent factor model. Expert Systems with Applications, 64, 467-475.
  • Liu, C.-L., Hsaio, W.-H., Lee, C.-H., Chang, T.-H., & Kuo, T.-H. (2015). Semi-supervised text classification with universum learning. IEEE Transactions on cybernetics, 46(2), 462-473.
  • Chang, T.-H., Liu, C.-L., Su, S.-Y., & Sung, Y.-T. (2014). Integrating various features to grade students’ writings based on improved multivariate Bernoulli model. International Information Institute (Tokyo). Information, 17(1),
  • Liu, C.-L., Tsai, T.-H., & Lee, C.-H. (2014). Online chinese restaurant process. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining,
  • Liu, C.-L., Chang, T.-H., & Li, H.-H. (2013). Clustering documents with labeled and unlabeled documents using fuzzy semi-Kmeans. Fuzzy Sets and Systems, 221, 48-64.
  • Liu, C.-L., Hsaio, W.-H., Lee, C.-H., & Chen, C.-H. (2013). Clustering tagged documents with labeled and unlabeled documents. Information processing & management, 49(3), 596-606.
  • Liu, C.-L., Hsaio, W.-H., Lee, C.-H., & Chi, H.-C. (2013). An HMM-based algorithm for content ranking and coherence-feature extraction. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 43(2), 440-450.
  • Liu, C.-L., Hsaio, W.-H., Lee, C.-H., & Gou, F.-S. (2013). Semi-supervised linear discriminant clustering. IEEE Transactions on cybernetics, 44(7), 989-1000.